Gut Bacteria Help Regulate Blood Pressure

Wednesday, February 27, 2013

Featured Article
Academic Journal
Main Category: Biology / Biochemistry
Also Included In: Infectious Diseases / Bacteria / Viruses;  Hypertension;  Nutrition / Diet
Article Date: 27 Feb 2013 - 3:00 PST

Current ratings for:
Gut Bacteria Help Regulate Blood Pressure


Patient / Public: not yet rated
Healthcare Prof: not yet rated

In a new study, US scientists suggest gut bacteria form part of a complex system that maintains the body's blood pressure. They have discovered a specialized odor-sensing receptor normally present in the nose can also be found in blood vessels throughout the body. In the gut, the receptor reacts to small molecules generated by bacteria by raising blood pressure. The study may aid understanding of how antibiotics, probiotics, and changes in diet affect blood pressure.

The team, led by researchers at The Johns Hopkins University and Yale University, write about their work, which they conducted in mice and lab cultures, in the 11 February online issue of Proceedings of the National Academy of Sciences.

First author Jennifer Pluznick, assistant professor of physiology at the Johns Hopkins University School of Medicine, says they were surprised to find that gut microbes contribute to blood pressure regulation and health:

"There is still much to learn about this mechanism, but we now know some of the players and how they interact," she explains in a statement.

Olfactory Receptor 78 Present Throughout the Body

Receptors are proteins usually found on the surfaces of cells. They bind and react to selective molecules, rather like a lock can only be opened by a specific key. The specific molecules are chemical signals that direct the cell to do something, such as divide, die, or allow specific materials to enter or exit the cell.

A few years ago, Pluznick found odor-sensing receptors (thought to exist only in the nose) in the kidneys, an event she describes as a "happy coincidence".

She and her team found one of these, olfactory receptor 78 (Olfr78), was dotted around the major branches of the kidney's artery and also in the small vessels or arterioles that lead into the kidney's filters.

When they looked further, they found Olfr78 throughout the body, sitting in the walls of small blood vessels, with more of them in the heart, diaphragm, skeletal muscle and skin.

Short Chain Fatty Acids Produced by Gut Bacteria Influence Blood Pressure

Intrigued by their find, Pluznick and colleagues set out to determine which molecules bind to Olfr78. They programmed cells to express the receptor on their surfaces, and rigged them so when a molecule bound to it, it triggered the reaction of a light-emitting chemical. So every time the cell "lit up", it meant that particular molecule had bound successfully to Olfr78.

A series of tests with different molecular cocktails revealed that Olfr78 only bound to acetic acid, more commonly known as vinegar.

Further tests revealed that propionate also binds to Olfr78.

Acetic acid, its derivate acetate, and propiniate, are part of a family of molecules called short chain fatty acids (SCFAs). SCFAs are produced in the large bowel as a result of bacterial fermentation of soluble fibre. They are then absorbed into the bloodstream, where they can interact with Olfr78.

When mice missing the Olfr78 gene were given SCFAs, the scientists observed that their blood pressure went down, suggesting SCFAs usually cause it to go up. But when they gave SCFAs to normal mice that had the Olfr78 gene, they were surprised to find this also caused blood pressure to go down, although not as far as with the other mice.

Complex, Contradictory Relationships Between SCFAs and Receptors

The team decided to find out what would happen if they reduced all sources of SCFAs available Olfr78 in the mice, including that produced by the gut bacteria.

So they wiped out the gut bacteria in the mice by putting them on a three-week course of antibiotics, and monitored their blood pressure. The normal mice showed little change, but blood pressure in the mice lacking Olfr78 went up. This suggested the relationship between Olfr78, SCFAs, and blood pressure was a bit more complicated than it looked at first: were other factors involved?

The team eventually discovered a non-odor-related receptor, Gpr41, also plays a role. Gpr41 also binds to SCFAs, and when it does, blood pressure goes down.

So there were two contradictory effects going on: when they bind to Olfr78, SCFAs make blood pressure rise, but when they bind to Gpr41, blood pressure falls. However, the effect of Gpr41 is stronger, so an increase in SCFAs results in an overall decrease in blood pressure.

Pluznick says there are "many players involved in the maintenance of stable levels of blood pressure", and they've found just some of them.

"We don't know why it would be beneficial for blood pressure to decrease after eating or why gut microbes would play a part in signaling that change. But our work opens the door for exploring the effects of antibiotic treatments, probiotics and other dietary changes on blood pressure levels in mice, and perhaps eventually people," she adds.

Grants from the National Institute of Diabetes and Digestive and Kidney Diseases, and the Leducq Foundation, financed the study.

An animal study published in the Journal of Proteome Research in 2012, suggests that bacteria living in the large bowel may also play a role in obesity by slowing down the activity of energy-burning brown fat.

Written by Catharine Paddock PhD
Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today

Visit our biology / biochemistry section for the latest news on this subject.
"Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation"; Jennifer L. Pluznick, Ryan J. Protzko, Haykanush Gevorgyan, Zita Peterlin, Arnold Sipos, Jinah Hand, Isabelle Brunet, La-Xiang Wan, Federico Rey, Tong Wang, Stuart J. Firestein, Masashi Yanagisawa, Jeffrey I. Gordon, Anne Eichmann, Janos Peti-Peterdi, and Michael J. Caplan; PNAS, Published online before print 11 February 2013; DOI: 10.1073/pnas.1215927110; Link to Abstract.
Additional source: Johns Hopkins University.
Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Paddock, Catharine. "Gut Bacteria Help Regulate Blood Pressure." Medical News Today. MediLexicon, Intl., 27 Feb. 2013. Web.
27 Feb. 2013. <http://www.medicalnewstoday.com/articles/256919.php>


APA
Paddock, C. (2013, February 27). "Gut Bacteria Help Regulate Blood Pressure." Medical News Today. Retrieved from
http://www.medicalnewstoday.com/articles/256919.php.

Please note: If no author information is provided, the source is cited instead.



Add Your Opinion On This Article

'Gut Bacteria Help Regulate Blood Pressure'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


27 Feb, 2013


-
Source: http://feedproxy.google.com/~r/mnt/healthnews/~3/Cuxthk-SsIY/256919.php
--
Manage subscription | Powered by rssforward.com

Powered by Blogger.